Remote Access Services (RAS)—including protocols such as Remote Desktop Protocol (RDP), Secure Shell (SSH), Virtual Network Computing (VNC), Telnet, File Transfer Protocol (FTP), and Secure File Transfer Protocol (SFTP)—are essential to modern network infrastructures, particularly with the rise of remote work and cloud adoption. However, their exposure significantly increases the risk of brute-force attacks (BFA), where adversaries systematically guess credentials to gain unauthorized access. Traditional defenses like IP blocklisting and multifactor authentication (MFA) often struggle with scalability and adaptability to distributed attacks. This study introduces a zero-trust-aligned Software-Defined Perimeter (SDP) architecture that integrates Single Packet Authorization (SPA) for service cloaking and Connection Tracking (ConnTrack) for real-time session analysis. A Docker-based prototype was developed and tested, demonstrating no successful BFA attempts observed, latency reduction by above 10% across all evaluated RAS protocols, and the system CPU utilization reduction by 48.7% under attack conditions without impacting normal throughput. It also proved effective against connection-oriented attacks, including port scanning and distributed denial of service (DDoS) attacks. The proposed architecture offers a scalable and efficient security framework by embedding proactive defense at the authentication layer. This work advances zero-trust implementations and delivers practical, low-overhead protection for securing RAS against evolving cyber threats.